Hàm số đơn điệu

Tính đồng biến (tăng) và tính nghịch biến (giảm) là các tính chất của một hàm số. Những hàm số tăng hoặc giảm trong một đoạn được gọi là đơn điệu trong đoạn đó. Với trường hợp tăng nghiêm ngặt hoặc giảm nghiêm ngặt thì được gọi là đơn điệu nghiêm ngặt.[1]

Thông thường để xác định tính chất đơn điệu của một hàm số người ta tìm đạo hàm của nó, nếu đạo hàm dương trong khoảng nào thì nó đồng biến trong khoảng đó, trong trường hợp âm thì ngược lại hàm số nghịch biến.[2]

Kí hiệu K là khoảng, đoạn hoặc nửa khoảng.

Giả sử hàm số y= f(x) xác định trên K. Ta nói :

Cho hàm số y=f(x) xác định và có đạo hàm trên K.

Giả sử hàm số y=f(x) có đạo hàm trên K.

Nếu f ′ ( x ) ≥ 0 , ∀ x ∈ K {displaystyle f'(x)geq 0,forall xin K} {displaystyle f'(x)geq 0,forall xin K} và f'(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến trên K

Nếu f ′ ( x ) ≤ 0 , ∀ x ∈ K {displaystyle f'(x)leq 0,forall xin K} {displaystyle f'(x)leq 0,forall xin K} và f'(x)=0 chỉ tại một số hữu hạn điểm thì hàm số nghịch biến trên K

Link nội dung: https://hubm.edu.vn/don-dieu-la-gi-a12842.html